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A REFINED NONLINEAR ANALYSIS OF
LAMINATED COMPOSITE PLATES AND SHELLS

J. N. Reddy
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
SUMMARY
This final technical report summarizes in a compact form the
results of a two-year research program on the development of refined
shear deformation theories of plates and shells, and their analytical
solutions. The detailed results are reported in various reports and
technical papers during the course of the project. A third-order,
nonlinear shear deformation shell theory and finite element mode] that
accounts for parabolic distribution of transverse shear stresses through
thickness and the von Karman nonlinear strains was developed during an
investigation sponsore by NASA Langley Research Center during the first
year of this research. The theory is further refined and extended and
analytical solutions are developed during this research. The most
significant contributions of this research are:
1. The development of analytical solutions of the 1inear theory
for various boundary conditions. The space-time concept fs

used to develop such solutions.

2. The development of moderate rotation theory of laminated
composite plates.

3. The development of finite element models for first-ply and
post-first-ply fallure analysis.

Future research related to refined theories should consider the
effects of moderate and large rotations and the development of micro-
and macromechanical constitutive models for a better understanding of
the structural behavior and prediction of progressive damage and failure

in composite structures.
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1. INTROODUCTION

The advent of new composite materials and their increasing use in
various fields of advanced technology has generated a new interest in
the development and solution of consistent refined theories of
anisotropic composite plates and shells. This interest is due to the
fact that the classical plate theory, in terms of its basic assumptions
(1.e. the Kirchhoff hypothesis), comes in conflict with real behavior of
these new materials. For example, in contrast to the basic assumption
of infinite rigidity in transverse shear in the classical plate theory,
the new composite materials exhibit a finite rigidity in transverse
shear. This property requires the incorporation of transverse shear
deformation effects.

In addition to other shortcomings, the classical plate theory
involves a contradiction between the number of boundary conditions
physically required to be fulfilled on a free boundary and the number
available in theory, which is to be consistent with the order of the
associated governing equations (see Stoker [1]). The non-fulfiliment of
boundary conditions on the bounding surfaces constitutes another feature
of the classical theory. In recent years attempts were made to refine
the classical theory by: (i) incorporating transverse shear effects,
(11) removing the contradiction which concerns the number of boundary
conditions to be prescribed at each edge, and (111) fulfilling the
boundary conditions on the bounding surfaces and, in the case of
laminated composite plates and shells, of the continuity conditions at
the interfaces between the contiguous layers. In addition, the refined

transverse shear deformation theories can be used to model such

anisotropic plates and shells whose material exhibits high degree of




anisotropy, and are not restricted to the thinness requirement implied
by the classical laminate theory. Another feature of refined laminate
theories concerns the adequate incorporation of the dynamical effects
allowing the evaluation of the lowest and higher natural frequencies.

The shear deformation theories known in the literature can be
grouped into two classes: (1) stress-based theories, and (2)
displacement-based theories. The first stress-based transverse shear
deformable plate theory is due to Reissner {2-4]. The distribution
across the thickness of the transverse normal and shear stresses is
determined through integration over the thickness of the equilibrium
equations of the 3-D elasticity theory. The associated field equations
and boundary conditions expressed in terms of 2-D quantities can be
determined by using the variational principles of the 3-D elasticity
theory, or by considering the moments of nth order of the basic
equations of 3-D elasticity theory. Both methods allow the reduction of
the 3-D problems to a 2-D equivalent one.

The pioneering work of the displacement-based theories is due to
Basset [5]. Based on Basset's representation of displacement field,
Hildebrand, Reissner and Thomas [6] developed a variationally consistent
first order theory for shells. The field equations were derived using
the principle of minimum total potential energy. This results in five
equilibrium equations expressed in terms of five displacement
quantities.

By using the displacement representation of Basset, Mindlin [7]
extended Hencky's theory (8] of isotropic plates to the dynamic case.

Historical evidence (from the review of the literature) points out that

the basic idea of the displacement-based first-order shear deformation




theory came from Basset [5], Hildebrand, Reissner and Thomas [6] and
Hencky [8]. Mindlin should be credited with the extension of the theory
to the dynamic case. The shear deformation theory of Hencky-Mindlin is
referred as the first-order transverse shear deformation theory (see
Reddy (9]).

Following these works, many extensions and applications of the two
classes of theories were reported in the literature (see e.g.
Ambartsumian [10-12], Boal and Reissner [13], Bolle [14], Cheng [15],
Gol'denveizer [16-18], Green [19-21], Kromm (22,23], Levinson [24],
Librescu [25-30], Lo, Christensen and Wu [31], Medwadowski [32], Murthy
[33], Nelson and Lorch [34}, Pagano [35,36], Reddy [37-40], Rehfield and
Vaiisetty [41], Reissner [42-47], Schmidt [48], Shirakawa [49], Volterra
[50], Whitney and colleqgues [51-54], Wilson and Boresi [55], Yang,
Norris and Stavsky [56]).

Extension of the displacement-based theory to the moderately large
deflections case is due to Medwadowski [32] and the extension to
laminated plates is due to Whitney [51] and Whitney and Pagano [52].
Schmidt [48] presented an extension of Kromm's theory by accounting for
moderately large deflections (i.e., in the Von-Karman sense).

The second- and higher-order displacement-based shear deformation
theories have been investigated by Nelson and Lorch [34], Librescu [25-
28], Lo, Christensen and Wu [31], Levinson [24], Murthy [33] and Reddy
(37-39]. Levinson [24) and Murthy [33] presented a third-order theory
in which transverse normals are assumed to be inextensibile. The nine
displacement functions were reduced to five by requiring that the

transverse shear stresses vanish on the bounding planes of the plate.

However, both authors (and also Schmidt [48]) used the equilibrium




equations of the first-order ti.2ory in their analysis and so they are
variationally inconsistent. As a consequence, the higher-order terms of

e the displacement field are accounted for only in the calculation of the

ii? strains but not in the governing differential equations or in the

‘f boundary conditions. Recently, during the course of the present

“, research, Reddy [37-39] corrected these theories by deriving the

4&1 governing differential equations by means of the virtual work
principle. The theory presented in [37] accounts for the von Karman
strains but is limited to orthotropic plates, while that in [38] deals

f‘! with the small-deflection theory of laminated plates.

Besides the works cited above, there exists numerous other works

L pertaining to refined theories of elastic plates. Thus, in addition to

§§§ the works of Basset, Reissner, Hencky and Mindl1in that have inspired the
5&3 elaboration of a great number of works, we mention the symbolic method
ﬁéﬁ advanced by Lur'e [57] which has generated a series of works devoted to
ﬁi{ the refined theory of the isotropic flat plates (see e.g., Westbrook

:ﬁg [58,59]). Starting from the three-dimensional field equations of

‘§§} elasticity, methods based on the expansion of all the functions

;g characterizing the plane state of stress into power series over the

plate thickness (see Schipper [60]), into Legendre's polynomials (see

oo Cicala [61]), into biharmonic polynomials (see Teodorescu [62]), or that

e resulting by cons1der1ng the nth order moments of the equations of

) three-dimensional elasticity (see Tiffen [63], Tiffen and Lowe [64]) are

developed.

. Another method which leads to the static and dynamic theory of
isotropic and anisotropic plates, is the method of asymptotic

integration of the three-dimensional equations of elasticity (see
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Gol'denveizer [17,18], Reissner [42], and Green and Naghdi [20]). Other
methods are of mixed character which use first, the method of expanding
the functions (defining the stress and strain state) into Legendre's
polynomials, and then the asymptotic integration method (see, for
example, Poniatovskii [65}]).

The analysis of laminated composite plates for bending and natural
vibration has received widespread attention in recent years. 3-D
elasticity solutions for the bending (see Pagano [36]), vibration and
buckling of simply supported thick orthotropic rectangular plates and
laminates were obtained by Srinivas and his co-workers [66-68]. The
Navier solution of simply supported rectangular plates was developed by
Whitney and Leissa [52] for classical laminate theory, Pagano [35],
Whitney [51), Bert and Chen [69] and Reddy and Chao [39,70] for the
first-order transverse shear deformation theory, and by Reddy and his

co-workers [37-39,71] for a refined shear deformation theory.

Papers dealing with the response of plates excited by dynamic loads

R e
RS

of known time history have been less in number. Sun and Whitney [72,73]
have analyzed the response of anisotropic plates in cylindrical bending
using Mindlin's [7] theory to account for normal shear stiffness. Sun

and Chattopadhyay [74] used the plate equations developed by Whitney and
Pagano [53] to analyze a specially orthotropic plate subject to a center

impact. Dobyns [75] presented an analysis of simply-supported

orthotropic plates subjected to static and dynamic loading conditions.
The vibration frequencies and mode shapes were then determined and
solutions for plate deflections, bending strains, and normal shear
forces due to several transient loads were obtained. Reddy (76,77]

obtained the exact form of the spatial variation of the solution to
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forced motions of rectangular composite plates for two different
lamination schemes, under appropriate simply supported boundary
conditions. He reduced the problem to the solution of a system of
ordinary differential equations in time, which are then integrated
numerically using Newmark's direct integration method.

In geometrically nonlinear theories of elastic anisotropic plates
one often assumes that the strains and rotations about the normal to the
midplane are infinitesimal, and retains the products and squares of the
derivatives of the transverse deflection in the strain-displacement
equations (the von Karman assumption; see [[32,37,78-80]). The full
geometric nonlinearity (implied by the strain-displacement equations of
nonlinear elasticity) in shell theories was considered by Naghdi [81],
Librescu [29], Yokas and Matsunaga [82], Habip [83], and Pietraszkiewicz
(84}, among others. Consideration of full geometric nonlinearity not
only results in complex equations, but not warranted in most practical
problems. On the other hand, the von Karman nonlinear theory does not
account for moderate rotation terms that could be of significance in the
analysis (especially in stability problems) of plates while accounting
for the transverse normal and shear strains. The small strain and
moderate rotation concept was used in the classical theory of plates and
shells by Sanders (85], Koiter [86], Reissner [87] and Pietraszkiewicz
(88], and in first-order plate and shell theories by Naghdi and
Vangsarnpigoon (89], and Librescu and Schmidt [90]. In all these works,
no attempt was made to obtain solutions of the theory.

From the review of the l1iterature on various plate and shell

theories, one can make the following observations:




1. Analytical solutions of refined theories of anisotropic
composite laminates, other than those with simply supported
edges, are not available. For example, the Lévy type solutions
are not developed for laminated composite plates. This might
be possibly due to the difficulty in solving the ordinary
differential equations resulting from the Lévy procedure.

Ei 2. The most commonly used refined theory is the first-order shear

deformation theory, commonly referred to as the Mindlin plate

. theory. It is well-known that the first-order theory (i)

@5 requires the introduction of shear correction factors (to

e correct for the constant state of transverse shear stresses

through thickness), (ii1) disregards the effect of transverse

Ah] and normal stress, and (iii) does not satisfy the stress-free
boundary conditions on bounding surfaces. It is also known
that the determination of the shear correction factors for
anisotropic composite plates is not established, and their
values depend on the geometry and lamination scheme of the
laminate.

3. Use of refined theories with moderate and large rotations
(situations quite commonly encountered in the analysis of
helicopter blades, turbine blades, etc.) is not investigated,

especial1y for anisotropic composite laminates.

During the present research analytical solutions based on the
ﬁ@. space-time concept were obtained and the third shear deformation with
RS moderate rotation terms was developed. A first-ply and post-first-ply
analysis capability based on the first-order shear deformation theory
,? was also developed. A brief summary of the first two results is

presented in the next section.
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2. BRIEF OUTLINE OF RESEARCH FINDINGS
A Third-Order Theory

Consider a laminated plate composed of N orthotropic layers,
symmetrically located with respect to the midplane of the laminate. The
governing equations of the refined theory are based on the following

displacement field [37-39]):

up = u+zly, - 3 @i, + )
up = v+ zlv, - 3 B2v, + ]
Uug =w (1)

where (ul,uz,u3) are the displacements along the x, y and z coordinates
respectively, (u,v,w) are the corresponding displacements of a point on
the midplane of the laminate, and Yy and 0y are the rotations of a
transverse normal about the y- and x-axes, respectively.

The cubic variation of u; and u, through laminate thickness

introduces higher-order resultants,

(RyaRy) = [ 2%(0g,0,)dz

N>

and laminate stiffnesses,
h
2 4 .6
(Fypyg) = Qgy(27s2)dz (1,4 = 1,2,6)

N




2 4
0,,F) = Q. (25,27)dz (1,J = 4,5)
13013 " h 13 '
H
For symmetrical cross-ply laminated plates, the following stiffness
coefficients vanish [39]:

81 =0 for i,§j = 1,2,4,5,6

1 By
16 = P26 * D16 = D26 = F16 = F2 = M1

Ags = Dag = Fas = 0
This implies that the effect of coupling between stretching and bending

A =}

26 = 0

vanishes. For such laminates the governing equations are given by (see

[37,38]):

3 3 3 3
4 T, 4., Yy a4w 3 4 ., 2"
—5 (Fyy =3 + B (- )=+ =) +F —2’-*-" (‘_Z)(—'Z'L
3h 11 ax 11 3R ax ax4 12 ax“ay 12 3 ax%ay
3 3 3
4 3Ty e 4 e
aw X 4 X aw
+ ) + Frp—g= + Hip(- =) (5= + 5tg) + Fpy —t
ax“ay 12 Ay~ ax 12 3n" ay“ax  axTay 22 3y

4 330 34w 33* 33*x 4 33"x
* Hppl- S (5t + 29 + Bggl—gl-+ —5) + Pgg(- —5) (—~
Y y

ax“ay  ay“ax ay“ax

3
D 4 2 v v 2
23w 4 aw X 4 X , 3w
* g ) - g g ¢ 570+ Fagl- )G+ )
Ix-ay h ax h ax

ax“ay
2. W 2 v 2
3w y _4 y , 2w X, 3w
*DaaC 2+ ay) * Faals PGy + )+ Asslai + 09)

W 2 W 2 W
4 X , 3w A w _4 Y
* Ogsl- )+ ) Agalay * 52 " Daal PGy

2
+ 3—%)] +q=0 (2a)
ay
2 2 2 2
3% 3V %y 3 v
X y _ .4 X , 3w . Y
0y3 axz * Dy, axay | Fral ;;?)(a 7 * ;;§) + Fal ;;?)(axay

X




e 200 (——,—'z' T )(—TZ L .
+ + -
axay 66 axay Fos "? my oy )
aw 4 w 4 'z'x
- TAggloy + 3%) + Dgg(- )0 + 301 - 23 1Py 77
2 2 2
3 t ) 3
_ A X 3w Y .
+ Hyy( ;;2)(axz * ;;3) *F2 axay Hia(- "?)(axay "‘,2)
2 2 2 2
) 3 e LI ) 3
y X __4 X y , 2'w
* F66(axay * ayz ) + Hggl ;;?)(',2 METTT axayz)]
+ f{ (055(‘3‘:' + ‘X) + Fss(' ﬁ)(*x + ':':')! =0 (2v)
2 2 2 2
e, 2 e, 3 e,
Oss(3xay axay * ax 2 ) + Fgl- ‘_7)(axay M ,ll +2 axzay) 012 3xay axay
2 2 2
e 4.0 % '3'
* 022 77 Fral 3P Gy * ;r,;’ * Fal- —7)(’—2" ’ ;;1)
4
- {A44(’y * %3) + Daal- -7)(’y * oy _'? lFGG(-—fl ayax
2 2 2
23 e g, "
+ Heg(- '_?)(axay 3x2 . :y Fl2 axa; + Hppl- ;;2)(axa;
4 w
F [, JO 10,,(=
- ay) * Fa —‘5 + Ml “"2)‘;21 ) ” * 7 0ael5y
v o)+ Fal- :?)(%;1 +9)] =0 (2c)

Here w denotes the transverse displacement, 'x and oy are the rotations
of the normal to midplane about the y and x axtis, respectively, q is the
distributed transverse load, and A1j. o‘j, F,J. Hij are the plate
stiffnesses, defined by

10




" o
(01,"",""‘]) = {h/ (Z oz )ﬁl (1, = 1,2 '6)

Ay go0y g = 0 "‘)(1 22,14z (1,5 = 4,5 (3)

Here ng) denote the reduced orthotropic moduli of the k-th lamina. The
boundary conditions of the refined theory are of the form: specify

w or 0n

w
n or Pn
on f (4)
o" or l“
‘ns or "ns

where I is the boundary of the midplane a of the plate, and

2 2
"n = "l"x + nzn + 2N6nxny

v v VPR 4 2
ns ("2 - Hl)nxny + Ms(ﬂ’t - ny)

2 2
n Plnx + Pzny + ZPsn‘n,

9
[}

2 2
(P2 - Pl)nx"y + Ps(n‘ - ny) (5)

- - 4 ns QP
n =Nt QZny * ;;7 ( s 33—)

4
P " H' -— P1 (t = 1,2,6)

The stress resultants appearing in Eq. (5) can be expressed in terms of

the generalized displacements (w.ox.uy) as:

11




¥, b 4, % azu 4, 12
MOy Oyt ful R PG D e PG ’,')
¥y °’ a2, 4,2y 22
202 * gy Pl G T ¢ Pl S G f;f)
v, vy 2
Mg = Dgsly “%ﬂ“ﬂ—’J’ﬁﬁ

02 - A“(., + ay) ‘( _?)(. + ?;

Q) = Agglv, + 3%) + Dggl- if)(.x

']} £17] v 2 2 2
= X s 4 X 3w 4 22w
Py Fll T Flz y M- ;;7)(37' + ;;2) + le(- ;;Z)(iil + ;;7)

] 3

] 2 1) 2
= X X 4 x , 3w 4 22w
PZ FIZ x * FZZ y + le(' 3"!)(_3‘ + a-xz) + sz( 3—"2-) (;;1 + ;2-)

Ry = Dgql2m + 4)) + Fogl- (R sy )
Ry = Dgglam + #,) * Fgl- —z)( 0,) (6)

Analytical Solutions

The present study deals with the development of the Lévy type solu-
tion of the refined shear deformation theory of Reddy (12,13] for sym-
metric rectangular laminates with two opposite edges simply supported and
the remaining edges subjected to a combination of free, simply supported
and clamped boundary conditions. The state-space concept is used to

12




solve the ordinary differential equations obtained after the application
of the Levy solution procedure.

The Lévy method can be used to solve Eqs. (2) for rectangular plates
for which two opposite edges are simply supported. The other two edges
can each have arbitrary boundary conditions. Here we assume that the
edges parallel to the y-axis are simply supported, and the origin of the

coordinate system is taken as shown in Fig. 1. The simply supported

boundary conditions can be satisfied by trigonometric functions in x.
The resulting ordinary differential equations in y can be solved using
the state-space concept.

Following the Lévy type procedure, we assume the following
representation of the displacements and loading:

o w(x,y) = Hm(y)slnox
m=1

v (%y) = mzl Xy (¥)cosax
(7)
by(x.y) = mfl Y'(y)sinax

. a(x,y) = £ Q.(y)sinax
i m=]

where a = %1 and Wy, X,, Yy and Q. denote amplitudes of w, v *

and q, respectively. Substituting Eqs. (7) into Eqs. (2), we obtain

‘ elu;'"' + QZH; + Q3H. + eax; + esxu + QGY;" + e7Y; + Q. =0
eaw; + egun + elox; + ellxn + elzvi = 0

LT SR PL R ST SR LI A ST AP (8)

Where primes on the variables indicate differentfation with respect to y,

13




and

4.2
b S by A 7
e, - 2(-3:2-)202“‘ v Meg) ¢ Ay - S50, 0 (f,)zr“

4 4 8
e-a—zl-F *—2H - 2F 07"! )

3 4 4 8 4.2
& *a (Fyy - — Hiy) o+ alZy Dce - (3)%Fcc - AL
5 e 20 Y e B 0 W55 " N F Tes ~ Pes

4 4
e, = (F,, - H,,)
6 3,‘2 22 th 22

2 4 4 8 4,2
& = o" 3 [-Fp - Weg v =3 (H)) + Me)) - Sy Dgq + (S3)Fay + Agy
3 3n h h
ea.e‘. eg.es
8 a2
€n = 0 - Fee + (—)H
10~ %6 3,7 o6 * (52 Mes
2 8 4.2 8 a2
e 0y s (G Ml 7 Oss - () s - Asg

8 4.2
12 7 21012 * Ogg - 37 (F1z * Feg) * (330" (Myp * Meg)]

13" % %4 "%+ 5" - ¢
8 4
e.*0,, - F,, + (—=)H
16 " 22 " 3,7 22t 372
2 8 4 ,2 8 4 .2
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Equations (8) can be written as:

1y g "
H; cl“- + ‘z“- + c3xl + CGY; + coQ-

X; s csu; + CGH. + c7x. + cevé
Ya " S * 0% * C11%a * C12"n (10)
)/ ( eg )
-e)/(e, + =
2 1 6

where !2 e.e.e e.e
. e, %%tz %%
0 °®10%6 ©16

<

°§
- e3)/(31 + 'Q'{g)

. . (8%, %5%%12
2 e et

10 10716
2

e,,e e,.e.e e
11% _ ®11%°%12 6
Ca = ( + - e)/(ey + =—)
3 Ve et Tl e
2 2
e.e e.e e.e e
cgm (il v 22+ 2L e )/(e) + )
16 10 10816 16
C B - lﬁ
0
©1%16 * %
Cg = -€4/€1g» Cg = -€5/€1gs C7 = -€1)/81qs Cg = -€15/84
Co = €g/®160 C10 = ¢7/€ 60 C11 = ©12/%160 €12 = 817/ (11)

The linear system of ordinary differential equations (10) with
constant coefficients can be reduced to a single matrix differential
equation using the state-space concept (see [91])

X' =Ax+b (12)

This can be done by introducing the variables

Xy = H., x2 = H*. x3 = H;, Xq ® H&"

Xs s x'o ‘6 = x;o l7 = Y.i xs = Y; (13)
where
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xi 0
xé 0
xi 0
x! .0
x' 4 b= o'm
xs 0
xé 0
x; 0
xé 0
and
[0 1 0 0 0 0 o6 o0
0 0 1 0 0 O 0 0
N 0 0 o 1 0 0 0 0
' c, O ¢y 0 ¢4 O 0 c
A = 2 1 3 4 (18)
0 O o 0 0 1 0 0
Cg 0 Cg 0 cy 0 0 cg
0 O 0O 0 0 O 0 1
0 ¢10 0 ¢ 0 ¢y ¢p 0
The solution of Eq. (12) is given by
x = ek + &V [ e AVbgy (15)
where K is a constant vector to be determined from the boundary
conditions, eAY denotes the product,
et 1Y 7]
. e o
i eV - [c] o7 [c)} (16)
9 .
- ety
16




{c] is the matrix of distinct eigenvectors, x1(1 =1,2,3,...8) are the

eigenvalues associated with matrix A, and [c]‘1 is the inverse of the

eigenvectors matrix [c].

The following boundary conditions are used on the remaining two

edges (i.e., the edges parallel to the x-axis) at y = =

simply supported: w = v, =

clamped: W= %3 =

free: Pp=Mp =
Mg - ;£7 p
Q, - f? R

5
2°M=0
x=;by=0
60
aP aP
4 6 2y _
* 3n2 (ax * 3y ) =0 (17)

Numerical results are presented for orthotropic and symmetric cross-

ply (0°/90°/0°) plates subjected to three types of loads:

uniformly

distributed load (q,), triangular distributed load (2q°) and concentrated

load P as shown in Fig. 2.

used in the calculations:

Material I:
€, = 20.83 x 106 psi
Gyp = 6.10 x 105 psi
Gy3 = 6.19 x 106 psi

’

The following sets of material properties are

E, = 10.94 x 105 psi
Gy3 = 3.7 x 108 psi (18)

Vi = 0.44

17




Material II:

Ey; = 19.2 x 106 psi » Ep = 1.56 x 105 psi
6yp = Gy3 = 0.82 x 108 pst , 6,3 = 0.523 x 108 psi  (19)
vy, = 0.24

.; The following notation has been used throughout the figures:
SS - simply supported at y = -b/2 and at y = b/2.
CC - clamped at y = -b/2 and at y = b/2.
FF - free at y = -b/2 and at y = b/2.
SC - simply supported at y = -b/2 and clamped at y = b/2.
SF - simply supported at y = -b/2 and free at y = b/2.
CF - clamped at y = -b/2 and free at y = b/2.
UN - uniformly distributed load.
{ﬁ? TR - triangular distributed load.
PL

point load at the center of the plate (20)

‘ To show the effect of transverse shear strains on the deflections
: { plots of nondimensionalized center deflection, w = 103w(a/2,0)h3E2/(q0a4),
versus side to thickness ratio of various plates are presented in Figs.
3-5. The shear deformation effect is more significant in cross-ply
i : plates than in orthotropic plates. Also, the first order shear
deformation theory (FSDT) over predicts deflections relative to the
higher order theory (HSDT).

Figures 6 and 7 contain plots of the transverse stresses 93
through laminate thickness for various boundary conditions. The
stresses were computed using lamina constitutive relations. The
transverse shear stresses are constant and parabolic, through thickness
of each lamina, respectively, for the first- and higher-order

theories. The discontinuity at interface of lamina is due to the
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mismatch of the material properties. When the stresses (ax.ay,a y)
obtained from the constitutive equations are substituted into the
equilibrium equations of elasticity and integrated to determine the
ig. transverse shear stresses, the resulting functions will be continuous
through the thickness.
Plots of the nondimensionalized center stress, 511 = 102011(%,
g 0, ;)hz/(qoaz). versus side to thickness ratio for simply supported and

free-free (SSFF) plates are shown in Figs. 8 and 9. The shear

deformation effect is quite significant for a/h ratios smaller than 10.

el A Moderate-Rotation Theory
The theory is a generalization of the classical plate theory, the
23. first-order shear deformation plate theory, and the third-order shear
3 deformation theories of Reddy [37-39]. The theory is based on an
assumed displacement field and orders of magnitudes of 1inear strains
and rotations. The associated strain-displacement equations are
" presented and the equations of motion are derived using the principle of
virtual work. Specialization of the equations of motion for various
existing theories is presented.
;, Points of a three dimensional continuum V are denoted by their
orthogonal curvilinear coordinates x = (x!,x2,x3). Covariant and
e contravariant base vectors at points of the continuum are denoted
i by 9y and g‘, respectively. Latin indices are assumed to have values 1,
‘ 2, 3, and the Greek indices have values 1, 2. The laminated plate
G continuum in the undeformed configuration is defined by the Cartesian

product of points in the midplane o and the normal [- h/2, h/2]:
- veax (-}, 5
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where h denotes the constant thickness of the laminate. Let x° denote
the curvilinear inplane coordinates and x3 be the normal to g. The

metric tensor components of o are denoted by

a a 33
909, "9 » 909" g% . 97 =gyl
r
gosj;.gq.gsgc:'g3ar_\ (21)

where r is the position vector of a particle (x2,x3) at time t, a: is
the Kronecker delta, and n is the unit normal to the boundary of q.
The displacement vector of a point in the plate at time t is of the

form
3 a
u = u°ga +u'n = u g% + uyn (22)

where the Efnestein summation convention on repeated subscripts s
assumed. The covariant components of the Green-lLagrange strain tensor

are given by

¢y " } CITRETIR u.I'u'IJ) (23)

where a vertical line denotes covariant differentiation. The strain
components e{j can be expressed in terms of the linearized strains e1j

and rotations wij as
se +vie ede e M eda N (24)
€13 1372 “mi®y T 7 iy mj”1 ? “mi®j

where

1 1
T A IR TR LRI I AU IT) (25)

Following [90], we now assume that the strains €45 and
rotations “45 are of the following magnitude:
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eyt 00D Lt 00%) L w00, sl (26)

Equation (26) implies that the strains and the rotations about the
normal to the midplane are small, and that the rotations of a normal to
the midplane are moderate. Such assumptions are justified in view of
the large inplane rigidity and transverse flexibility of composite
laminates.

Neglecting terms of order (e‘) and higher in the strain
displacement equations (24), we obtain

1 3 3 1 3
e T %aa * 3 (83595 ¢ 03a9;) * T ugug

o - A 3 1 A
a 93 " %3 %2 (eXau3 * e33wa) * 2 “xa"3

A 1 A
€33 T 33 * € 393 * F w393 (27)

-~ where the underlined terms are of order (63).

The present theory is based on the following assumed variation of
the displacement components across the plate thickness:

ua(xe,x3.t) = u:(xe.t) - x3ug|° + f(x3)u:(xe.t)

u3(faxd,t) = w0t t) + ug(xt, ) (28)

where f is a specified function of the thickness coordinate x3. Note
- that the transverse deflection is assumed to be independent of x3 and
i,, consists of two parts, one due to bending and the other due to
e transverse shear. The particular form of displacement field is assumed

in order to include the displacement fields of the classical plate
1

. 0), the first-order shear deformation theory

s theory (set Gg =0 and u
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[set ug = 0 and f(x3) = x3|. and the third-order shear deformation theory
3
of Reddy [39] (set ug = 0 and f(x3) = x3[l - g (ﬁ—)zll. among others.
For the displacement field in Eq. (28), the strains for the

moderate rotation theory become (consistent with the assumptions in Eq.

(26)1,
i .0 31
N: a8 ‘a8 tx a8 * f‘oﬂ
N 0 ) 30 31 1 ~1

€93 T a3 T 93 T X g3t W3t f‘a3 * fgtu3
0 ~ 2°o0
eg3 = €33 ¢ egy + 9 eq; (29)

where g = df/dx3, and

o0 2 (435 * U51a) * 2 (5, * 93,0004 + 63
g ‘ie : - ”glas * Sap % (u:|a * u:la) ’ ‘:3 * % (Gg|a N u:luugls)
;:3 * % (": * ”:Ia":) ’ ‘03 - % “glxa“glx ’ ‘13 * - % ”glxaui
| 'cl.s - 115 “i|a"§|x ’ ;:3 - % “ha“i s €33 7 % “g|a“§|a
o €33 % - “g|a“: v ¢33 7 3 ugu (30)

The dynamic version of the principle of virtua) displacements is
used to derive variationally consistent equations of motion associated
o with the displacement field in Eq. (28). The principle can be stated,

in the absence of body forces and prescribed tractions, as
T 1j L -

el 0=[ 1] (o scij)dv + [ qsu4dA - J p(u 80, )dV]dt (31)
oV Q v

where aU denote the contravariant components of the symmetric stress

tensor, q = q(x3) is the distributed transverse force per unit area,
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and o is the density of the material of the plate. The superposed dot

denotes the time derivative, u = au/at. We introduce the couples and

jnertias,
h
8 2- 8 3 3
(N°B, M8, P98y = [ 4%B(1, X7, f)dx
h
-3
h
- - “ 2
(Q%, Q% R%, R%, s%, §%) = [ %31, g, x3, x3q, f, Fg)axd
h
-2
h
-~ " 2
w3, 83, 8 -1 o33, g, ¢d)add (32)
h
-2

| =
-
>

2 2 2
=0 e, 1 =) oded, 1l =, ofad
h h ‘h
-4 - 2
h h h
2 . 2 2
=] o(xHx3, 1, =0 odfaxd, 1f =1 of2ad (33
2=, 2=, 2=1
-2 ) -2

The equations of motion of the theory are obtained by substituting Eq.

0. 0%0 1
a’u3’u3’ua)

into Eq. (31), integrating by parts to transfer differentiation from the

(30) for the strains in terms of the displacements (u

displacements to the stress resultants and couples, collecting the
coefficients of the various virtual displacements, and invoking the
fundamental lemma of the calculus of varfations. We obtain the

following six equations:

31




o, ad s (] 81 o f- 1
su: N Is' U3l )| +(Qu)| 1u3| + Tu
0, aB aB

- <R°|0u3,9>|3+ (ri"ug)lB (s% 1| ), +(N3 AL

-0 :0 “0 1 “0
- (W )' = A+ lglug +ug) « Liugy g * Ty * 1430,

"0, aB, O "0 a)  _ “0 :o
5“3- [N (u3|6+u3,8)”0+0 IG‘Q* IO(U3+U3)
1
a

a8 B YN <8 1
P |e - (s * __l ) + Ry U3les * S Isuc

o (565 )15 - W3l + WG, = 10 - i u), + Tgus (39)

where the underlined terms are entire]y due to the inclusion of moderate

N rotations (i.e., over and above the von Karman nonlinear terms).
1y,
,:jﬂ Equations (34) can be specialized to the three different theories
' discussed earlier. The equations are summarized below:
e
et “0 1
e (1) Classical Plate Theory (u3 =0, u_ =0)
Wt
h NGB' - I
y 3|a
,‘f;::"' af aB a a
B Mg+ (N U3(q) M, - (@ usla Mg - (RY] U3|B)| + (0 031 ),
| =q+ Iou3 I1 ala I, 3|uu (35)
K
K
e (i1) First-Order Shear Deformation Plate Theory
.*!,; (ug = 0’ f = X3)
; 9 a8 8 1 = 1.0 -1
~ﬁf N |B + (Q ua)lB I, + Ilua
o _a
D a a8’0 -0
QIG+N |)| =q+Iu3
o a8 8 1 8 = 1.4° a1
':ﬁ; M |B -Q (ca IB) - N3 u +R | u = L + Ly, (36)
o 32
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(111) Third-Order Shear Deformation Plate Theory

(ug =0, f=x1- % (x3lh)21)

g+ @)l = 185+ 13,

Q°|c + (N"B 3|8 )| =q+1 u3

P°B|8 - (]8(5“8 + ugls) + S°|su N3y 1 1u + 1 u1 (37)

a

Note that several other theories can be obtained from Eq. (35) as
special cases. For example, the refined theory of Kromm [22,23], along

with that of Basset [5], can be obtained by setting Gg = 0,
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